Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications

نویسندگان

  • Chenyang Tao
  • Thomas E. Nichols
  • Xue Hua
  • Christopher R. K. Ching
  • Edmund T. Rolls
  • Paul M. Thompson
  • Jianfeng Feng
چکیده

We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression

In this paper, we consider the problem of learning high-dimensional tensor regression problems with low-rank structure. One of the core challenges associated with learning high-dimensional models is computation since the underlying optimization problems are often non-convex. While convex relaxations could lead to polynomialtime algorithms they are often slow in practice. On the other hand, limi...

متن کامل

Numerical methods in higher dimensions using tensor factorizations

Numerical methods in higher dimensions using tensor factorizations I this talk I will collect recent advances in the solution of high-dimensional problems in different application areas: chemistry, biology, mathematics. The language of low-rank factorization gives a unified view on different algorithms for the solution of seemingly diverse and unconnected problems. Typical applications include ...

متن کامل

A Generalized Least Squares Matrix Decomposition

Variables in high-dimensional data sets common in neuroimaging, spatial statistics, time series and genomics often exhibit complex dependencies that can arise, for example, from spatial and/or temporal processes or latent network structures. Conventional multivariate analysis techniques often ignore these relationships. We propose a generalization of the singular value decomposition that is app...

متن کامل

Tensor Regression Networks with various Low-Rank Tensor Approximations

Tensor regression networks achieve high rate of compression of model parameters in multilayer perceptrons (MLP) while having slight impact on performances. Tensor regression layer imposes low-rank constraints on the tensor regression layer which replaces the flattening operation of traditional MLP. We investigate tensor regression networks using various low-rank tensor approximations, aiming to...

متن کامل

A General Model for Robust Tensor Factorization with Unknown Noise

Because of the limitations of matrix factorization, such as losing spatial structure information, the concept of low-rank tensor factorization (LRTF) has been applied for the recovery of a low dimensional subspace from high dimensional visual data. The low-rank tensor recovery is generally achieved by minimizing the loss function between the observed data and the factorization representation. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 144 Pt A  شماره 

صفحات  -

تاریخ انتشار 2016